If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+31x+15=180
We move all terms to the left:
2x^2+31x+15-(180)=0
We add all the numbers together, and all the variables
2x^2+31x-165=0
a = 2; b = 31; c = -165;
Δ = b2-4ac
Δ = 312-4·2·(-165)
Δ = 2281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-\sqrt{2281}}{2*2}=\frac{-31-\sqrt{2281}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+\sqrt{2281}}{2*2}=\frac{-31+\sqrt{2281}}{4} $
| X+4+3x-17+2x-5=180 | | (2x^2+31x+15)x=180 | | 3(q+5)=37 | | 4x+18-2x+3(20+2x)=150 | | -1/6x^2+22x-432=0 | | 86=2x=90 | | 38c−2=32c−12 | | 2x+3x-54=180 | | 5^(2n-1)=25 | | (86+x)2=90 | | 3z/8+7=2 | | $3(x-5)+8(x-5)=22$ | | x-7=30/5 | | 2x=3x-54 | | x+24=8x-4=5x+17 | | z/10+8=10 | | 12(y+3)=5(2y-7) | | x+7/5=3x+1/3 | | x^2-2=142 | | .4x+.3=1 | | x-16x=-75 | | 9=-2x+11 | | 6n/12=3 | | 4z/10+9=-6# | | 7y-8=50y | | 13x-212=4x-14 | | 5x+3(-x)=2x+1+2x+3 | | 7(b-8)=3(b+12) | | 5=6y-13 | | 3(p+1)=21 | | 5x-4=-14x= | | 10x^-7x=0 |